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CONVERGENCE OF PRODUCT INTEGRATION RULES OVER (0, oo) 
FOR FUNCTIONS WITH WEAK SINGULARITIES AT THE ORIGIN 
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Dedicated to Luigi Gatteschi on his 70th birthday 

ABSTRACT. In this paper we consider integrals of the form 

j e-K(x, y)f(x) dx, 

with f e CP[O, ox) n Cq(O, oo), q > p > 0, and xif(P+i)(x) e C[O, oo), 
i = 1, . .., q - p, when q > p . They appear for instance in certain Wiener- 
Hopf integral equations and are of interest if one wants to solve these by a 
Nystrom method. 

To discretize the integral above, we propose to use a product rule of inter- 
polatory type based on the zeros of Laguerre polynomials. For this rule we 
derive (weighted) uniform convergence estimates and present some numerical 
examples. 

1. INTRODUCTION 

Several problems of mathematical physics lead to integral equations of the 
form 

b 
(1.1) U(y) - jK(x -y)u(x)dx = h(y), 

where the kernel K(x - y) is weakly singular at x = y, and the interval (a, b) 
is either bounded or unbounded. 

When (a, b) is finite, for example (a, b) (-1, 1), and the input function 
h(y) is smooth, say h E Cm[-1, 1], m > 1 , the solution u(x) of (1.1) has the 
same degree of smoothness as h(y) in (-1, 1), but exhibits some mild singu- 
larities at the endpoints ?1 . For instance, when IK(x - y)l < clx - ylv for 
some -1 < v < 0, it has been shown in [27] that the solution u(x) belongs to 
the set C[- 1, 1] n Cm (-1, 1) . By taking advantage of known information on 
the behavior of u(x) in [-1, 1], we have in [19] considered product integra- 
tion rules of interpolatory type, based on the zeros of Jacobi polynomials, and 
have derived corresponding uniform convergence estimates. In the more general 
case of a function u E CP[-1, 1] n Cq(1, 1), p > 0, q > 2p + 2, with 
(1 - x2)iu(P+i)(x) E C[-1, 1], i = 1, ..., q - p, and a kernel IK(x, y)l < 
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cIx -yIV, -1 < v < 0, we have obtained for the remainder term of the quadra- 
ture rule the following estimates: 

1.2 { O(n-2-2p-2v log n)En-qq(D(q)) for - 1 < y < 1 
(1.2) O(n-2-2Plogn)En-q(D(q)) for - 1+ ?y < 1-e, 

where Ek(f) denotes the error of the uniform best approximation polynomial 
of degree k associated with the function f, and ?(x) = (1 - x2)q-Pu(x). 
We recall that when ?(q) (x) is Holder continuous of order ,u in [-1, 1], we 
have En-q((D(q)) = O(n-M) (see [25]). Estimates like (1.2) are of importance 
when the product rule mentioned above is used to construct a stable Nystr6m 
interpolant to solve (1. 1). 

In the case of (a, b) unbounded, a few authors (see [16, 23]) have considered 
product integration formulas based on zeros of orthogonal polynomials and 
proved their convergence. However, they have not derived any error estimates; 
furthermore, their studies essentially refer to the case (a, b) -- (-oo, oo). 

In this paper we consider the case of an integral of the form 

(1.3) e-xK(x, y)f(x) dx, 0 < y < oo, 

with 

e-aY exI K(x, y)12 dx < c for some a >0, 
00 

associated with an integral equation of type (1.1). Indeed, in [13] it has been 
shown that when in (1.1) K(x - y) satisfies some specified conditions, and the 
input function h(y) is smooth on (O, oo), behaving like c + yIS, 0 < ,u < 1, 
as y -O 0, and like e-y, 3 > 0, as y --+ oo, then the solution u(x) has a 
similar behavior. If h (y) is constant, then u(x) = u(x) - u(oo) has the behavior 
described in the previous case, and the integral equation can be reformulated 
in the new unknown u(x). 

Therefore, in ?2 we examine the general case of (1.3) with f E CP[o, xc) n 
Cq (o, xo), q > p > o,. and x'f(P+') (X) E C[O,5 oo), i = 1,5 ... ., q - p, and 
propose to approximate (1.3) by a product quadrature formula of interpolatory 
type based on the zeros of Laguerre polynomials. This rule will integrate ex- 
actly the factor e-xK(x, y). For its remainder term we obtain error estimates 
analogous to (1.2). In ?3 we present some numerical examples which show how 
our product rules can be constructed and how they perform. 

To derive the error estimates for our product rule, we use two intermediate 
results, which appear to be new and of interest in their own right: a weighted 
(with weight e-x) L2-convergence estimate for the Lagrange interpolation poly- 
nomial based on the zeros of Laguerre polynomials, and an estimate for the 
remainder term of the classical Gauss-Laguerre quadrature formula. 

2. CONVERGENCE ESTIMATES 

The following two lemmas, which are fundamental for deriving the conver- 
gence estimates in this section, have been very recently proved in [5]. 

Lemma 1. Let g E Cq[0, oo). Then for all integers m sufficiently large there 
exist polynomials Qm (x) of degree m such that for k = 0, ... , q, r > 0, and 
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0 < x < 00 

(2. 1 ) e- x 
k- (k) (x) - Qm)(x) ? Mq,i m k Em_q(g(q); e- nq), 

where Mq,k is independent of m and g, and' 

En(f; w) := inf llw[f -Pn]jjoo,[O,oo) Pn 

Moreover, g(q)(0) = Q(q)(0). 

This result represents the half-line analogue of corresponding estimates de- 
rived, for example, in [12, 7] in the case of finite intervals. As in [19], we will 
use bound (2.1) to obtain our convergence estimates. 

Lemma 2. Let g E Cs(-xo, 00). Then for all integers m sufficiently large there 
exist polynomials pm (x) of degree m such that for k = 0, ... , s, r > 0, and 
-00 < t < 00, we have 

le- r [()t-m)t] < YkM 2 Em*_,(g(s); e-r) 

and 
g(k) (0) = Pm k) (?) 

where Yk is a constant independent of g and m, and 

En* (f; w ):= inf llw[f f-Pn]11 oo, (-oo,oo) o 
Pn 

Furthermore, pm(t) can be chosen to be even if g(t) is even, and odd if g(t) is 
odd. 

Lemma 2 is of importance because it allows us to establish a relationship be- 
tween En(g(x); w(x)) and E2*(g(t2); w(t2)). We recall that in the literature 
we find mainly estimates for this latter error (see for instance [9]). In our case, 
by setting x = t2 and applying Lemma 2 with s = k = 0 and m = 2n, we 
have2 

(2.2) En(g(x); e-) < cE2*n(g(t); e ), 

where we have defined g(t) = g(t2). Bounds for En* can be obtained by 
using the representations given in [9, Chapter 11]. For instance, we have 

2 2 

En*(ty; e-)= O(n`u), O < ,u < 1, and En*(tlogt; e-)= O(n-2) 

Next, for q > p > 0 we set 

(2.3) Cpq[0, 00) := {f E Cp[O, 00) n Cq(0, 00): xif(P+i)(x) E C[O, 00), 

i = 1 ,I II ,q -p}, 

and with f E Cpq[0, 00) we associate the auxiliary function 

(2.4) ?(x) := xq-P f(x) E Cq[0, 00), 

which satisfies the conditions 

00(0)n = n i = n~ q _p - 

IHere, p, denotes a polynomial of degree n and IIuIIOc,[o,) = maxo<x<oo Iu(x)I 
2Here and in the following, c denotes a constant taking different values on different occurrences. 
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when q > p. We denote by Qm(x) the polynomial of degree m defined by 
Lemma 1 with g(x) _ D(x). We have 

(2.5) Qm(X) = Xq Pm+p-q(X), 

where Pm+p-q(x) is a polynomial of degree m + p - q . From (2.1) we obtain 

(2.6) e-r (k)(X) - Q e(x) ? Mq,kX i m2 E_q(F(q); er); 

hence, recalling (2.4) and (2.5), and setting k = 0 in (2.6), we have 

(2.7) e- If(x) - Pm+p_q(x)I < Mq,0xP-2 m-mE q((m); e-x). 

Then we introduce the Lagrange interpolation polynomial of degree n - 1, 
Ln (f; x), associated with the zeros of the Laguerre polynomial Ln (x). We 
recall that the L2-convergence, with weight e-x, of Ln(f; x) towards f(x) 
follows from a result derived many years ago in [3]. Indeed, if in the theorem 
ofthatpaperwe take h(x) O for -oo < x < O and h(x) = ex, O < e < 1, 
for 0 < x < 0, and g(x) - e(le-)Ixl, we obtain 

Lemma 3. Let f E C[O, ox) be a function satisfying the inequality 

If(x)l < ce(le-)41, O < x < oo, 

with e > 0 as small as we like. Then we have 
fOO 

lim] e-x[f(x) - Ln(f; x)]2 dx = o(1). 
n--0 Jo 

Here, having inequality (2.7), we will derive the following estimate. 

Theorem 1. Let f E Cpq[O, o), q > p > O. Then for any r > 2 we have, with 
1D as in (2.4), 

{j e-x[f(x) - Ln(f; X)]2dx} 

(2.8) f O(n)En_p1(- ( ); e-) if q < 2p, 

= < O(n-P- i log n)En_ 1 
(W(_); 

e- D rq ) if q = 2p + 1, 

O(n-P- )En_p_ ((); e-) if q > 2p + 2. 
Proof. Let Pn-,(x) be the polynomial of degree n - 1 defined in (2.5), and 
write 

0.0 2 

{j e-x[f(x) - Ln(f; X)]2 dx} 

<{ e- [f(x)- n_P(x)]2 dx} +{J ex[Ln(f -Pn_; x)]2dx} 

Thus we need to examine the behavior of the following two integrals: 

I = J e-x[f(x) - P1 (x)]2 dx, 

2 00 

I2 =/e-x[Ln(f - Pn-1; X)]2 dx. 
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We consider first I, and break the interval of integration in three parts: [0, n-], 
[n-, 1], [1, oo) . Then we proceed as follows. For 0 < x < n1 we write 

e~ If(x) - Pn_l(x)I = e-x? ID(X) - Qn+q-p-I(X)I 

e_ r ( ) x)-n+q-p- (x) 
= e - (q -p)! 

hence, recalling (2.6) with k = q - p, we get 

e lf(x) - Pn (x) I < -En-p- I e-). 

From this inequality we derive the bound 
n-' 

(2.9) j e-x[f(x) -Pn_l(X)]2 dx < cn-2P-IEn _p_1(D(q); e-), r > 2. 

In the case n1 < x < 1 we use (2.7) and obtain first, for r > 2, 

e-x[f(x) - Pn_I(x)]2dx < c [ X2P-q dx] n nE_pl(D(q); e-), 

and then the bounds 

0( O-q)En-_p_j((D(q); e-s,) if q < 2p, 

(2.10) O(n-2P- Ilogn)E n_P_(D(q); e-') if q = 2p + 1, 

O(n-2P-l)E 1(?(q); e- ) if q > 2p + 1. 

For 1 <x < oo weuse (2.7) with k = 0 and r> 2. Wehave 
0.0 

j es[e- If(x) - Pn_1(x)I]2dx 

< c e -sx2P- dx] n En_p_l((); ) +e-x) +r=1. 

Thus for I, the bounds (2.10), with r > 2, hold. 
To examine I2, we apply to it the n-point Gauss-Laguerre formula, 

'oo n 
J exf(x) dx = hnif(xni) + RGL(f) 

O i=l 

where the nodes {xni} are in increasing order, i.e., 0 < xnl < Xn2 < ...< 

Xnn < 00 . Since this latter integrates exactly any polynomial of degree 2n - 1, 
recalling (2.7), we obtain, for r > 2 and s = r/2, 

n n 

I2 = Zhni[f(xni) -Pn- 1(xni)]2 = hnie [e- aLIf(Xni)- Pn-i(XnJ)I]2 
i=1 i=l 

When q < 2p, since (see [26]) 
n 0O< 

lim hnie ni e= ] r d <00o, 
ni= 1 
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we have 
I2 < cn E D1(F(q); e-n). 

When q > 2p + 2, to bound I2, we first notice that 

I2 < CXn2-+ I Khnie s ni) n qEn2-p-l(() er'). 

Then, recalling (see [24, pp. 129, 355]) that 

n+ 1 
and ~~~~~(i+ 1)2 

and 

hni for O< Xni < (0, 

where co is any fixed positive real constant, we note that 
flaL 

Z h,es <cn 
Xn < () Xi 

and 
x,, n 

Ehni x2 < cEhnie s < c. 
Xni>(O _n i 

Therefore, in this case we have 

I2 < cn- '-En2_P 1oq; e-1). 
Similarly, when q = 2p + 1, from the quantity 

e s 
Ehni ef 
i=1 Xn 

we obtain the corresponding bound stated in (2.10). o 

Incidentally, we notice that when in (2.8) we take q = p, we get a bound 
which is similar to corresponding ones recently obtained in [4, 14]. 

The machinery we have used to prove Theorem 1 allows us to derive a new 
error estimate for the classical Gauss-Laguerre quadrature formula when this 
latter is applied to functions f E Cpq[O, oo), q > p > 0 . Indeed, by considering 
the same polynomial Pn-I (x) defined in the proof of Theorem 1, we can write 

00 n 

(2.11) JRGL(f) I ex If(x) - Pn- I(x) I dx + hni If(xni) - Pn 1(xXni). 
O ~~~~~~~~~i=l 

To examine the behavior of the two terms on the right-hand side, we proceed 
as we did for the quantities I, and I2 in the proof of Theorem 1. We obtain 

Theorem 2. Let f E Cpq[O, o), q > p > 0. Then for the remainder term 
R?GL(f) of the Gauss-Laguerre formula we have the bounds 

J O(n-)En1((); e 2) if q < 2p + 1, 
(2.12) IRnL(f)I = (n-P-1 logn)En_p_1(?(D); e-X) if q = 2p + 2, 

O(n-P-l)En-l(?(q); e ) if q > 2p + 3. 
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Remark 1. If we examine the remainder term following the standard proce- 
dure, that is, we consider f E CP[O, oo) even when q > p and take in (2.1 1) 
P,n_(x) coinciding for example with the polynomial defined in Lemma 2, af- 
ter setting x = t2 (see also [14, Theorem 1]), we would obtain the bound 

0(n-5?)En*_P_ 1( f(P); e-_t2) . 

Remark 2. The need of estimates of type (2.12) for functions f E Cpq[O, xc), 
with q > p, arises whenever f(x) at the origin is not as smooth as elsewhere. 
For instance, in the case of an integral equation of type (1.1) with a kernel 
K(x, y) = Ks(x-y)+Kr(x , y) , where K. is weakly singular and Kr is smooth, 
we would set 

j e-xK(x, y)f(x) dx= j e-xKs(x - y)f(x) dx 

t00 

+ J e-x[Kr(x, y)f(x)] dx. 

The first integral on the right-hand side would then be approximated by an n- 
point product rule of type (2.13) below, and the last integral by the n-point 
Gauss-Laguerre formula. 

Next we consider product rules of interpolatory type, based on the zeros of 
Laguerre polynomials, of the form 

00 n 
(2.13) e-xK(x, y)f(x) dx = ,wni(y)f(xni) + RK(f; y), 

O i=l 

where R K (f; y) = fo e-xK(x, y) [f(x) - Ln (f; x)] dx. By applying the Holder 

inequality, we obtain 

J e-xK(x, y)Ilf(x) - Ln(f; x)I dx 

< { e-xIK(x, Y)I2dx} {J exlf(x) - Ln(f; x)I2dx} 

and, assuming 

(2.14) e-a e-xlK(x, y)12dx < c for some a > 0, 

from Theorem 1 we derive a uniform bound for e-IYRK(f; y). 

Theorem 3. Let f e Cpq[O, o), q > p > 0. If in (2.13) the kernel K(x, y) 

satisf es condition (2.14), then for any r > 2 we have the bounds 

Ile-IYR K(f; y)110oo 

2.15 ( O~~(n-I)En-p_-(( )e-r) if q < 2p, 
= alogn)Enp_1(4>(q); e- X) if q = 2p + 1, 

1 O(n-P- )En_ (cF(q); e-) if q > 2p + 2. 

Remark 3. Notice that in (2.15) we have the factor n-P- while we would have 
expected the term n-P-I or n-P-I+8, with e > 0 as small as we like, as in 
(2.12). This is due to the fact that in our proof we have been forced to use the 
Holder inequality with the L2-norms. 

Furthermore, for rule (2.13) the following property holds. 
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Theorem 4. For any fixed y > 0 let f0?? e-XIK(x, y)12 dx < 00. Furthermore, 
let f E C[O, x0) be a function satisfying the inequality 

If(x)I < ce('-")12 

for some e > O. Then for any fixed y > O we have 
n oo 

(2.16) lim Wni(Y)If(Xni)= e-xlK(x, y)lf(x) dx. 

Proof. By inspecting the proofs of Lemma 2 and relation (2.4) in [23], we dis- 
cover that with very minor changes they also hold for our rule (2.13). Indeed, it 
is sufficient to consider in those proofs the L2-norm Ilull2 = [OI?7e-xIu(x)12 dx]2, 

choose h(x) = e(1-8) , use Lemma 3, replace k(x) by e-xK(x, y) and k*(x) 
by e-xK*(x, y), and finally recall the sufficient condition obtained in [26] for 
convergence of the Gauss-Laguerre rule. o 

3. NUMERICAL RESULTS 

In the first part of this section we apply the Gauss-Laguerre formula and the 
product rule (2.13) to some functions of class Cpf[O, oo) to verify the order of 
our estimates (2.12) and (2.15). 

In particular, to test our bounds (2.12), we have applied the n-point Gauss- 
Laguerre formula to the following integral: 

(3.1) = [~00 -ab 00-xb(-)d -F(b + 1) 
(3.1) II =-e-aXI dx e-X[Xbe(X-a)x]dx- ab+l 

with b = 2 3 5 and a = I The corresponding relative errors (in absolute 
values) are reported in Table 1. 

To check the behavior of formulas of type (2.13), we consider the integrals 

(3.2) I2 = j e-xe-lx-YIXb dx 

and 

(3.3) I3 = J e E(lx (-yI)xbdx, 

where El (t) denotes the exponential integral (see [1]). Their kernels satisfy 
condition (2.14) with a = 0 and appear in certain well-known Wiener-Hopf 
integral equations (see [2, 13, 22]). 

TABLE 1. Relative errors of the n-point Gauss-Laguerre rule 

a b 4 8 16 32 64 128 256 

1/2 1.5E-2 5.2E-3 1.8E-3 6.4E-4 2.3E-4 8.OE-5 2.8E-5 
1 3/2 2.4E-3 3.8E-4 6.3E-5 l.1E-5 1.9E-6 3.4E-7 5.9E-8 

5/2 6.5E-4 4.3E-5 3.3E-6 2.8E-7 2.4E-8 2.1E-9 1.8E- 10 

1/2 3.2E-3 1.7E-3 6.3E-4 2.2E-4 8.OE-5 2.8E-5 l.OE-5 
0.5 3/2 l.lE-2 6.4E-5 l.OE-5 1.9E-6 3.3E-7 5.9E-8 l.OE-8 

5/2 4.4E-2 4.6E-5 2.6E-7 2.3E - 8 2.OE-9 1.8E- 10 1.6E- 11 
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We recall (see [10]) that the coefficients Wni(y) of (2.13) can be represented 
as follows: 

n-I 00 

(3.4) Wni(Y) = hni aj (y)Lj(xni), aj(y) = J e-xK(x, y)Lj(x) dx. 
j=0 

Furthermore, in the case of our kernels the following properties of Laguerre 
polynomials, which are taken from [24, ?5.1], are fundamental: 

Lo(x)= 1, 

(3.5) LI(x) = 1-x, 
1 jLj(x) = (2j-1-x)L_11(x)-(j-1)Lj-2(x), j j2,. 

(3.6) L1(O) = 1, 

(3.7) Lj(x) = L(S)(x) -L(1) (x) 

(3.8) d Lj(x) =-Lj1) I (x), 

(3.9) j[Lj(x) - Lj (x)] =-xL(1) (x) 

where L5')(x) denotes the generalized Laguerre polynomial orthogonal with 
respect to the weight function xe-x. Notice that from (3.7) and (3.8) we 
obtain 

(3.10) d (e-xLj(x)) = -e-xLSl)(x). 

Then we introduce the auxiliary quantities 

(3.11) pu (y) = J e-xK(x, y)Ljl) (x)dx - j K(x, y)d(e-xLj(x)), 

so that, by (3.7), for j > 1 we have 

(3.12) aj (y) = I-s (y) - ij- I (Y) 

We consider first the case K(x, y) = eIx-YI . For y > 0, by applying the 
integration-by-parts rule, we obtain 

JU)= ,U(2)(y) = - j e-(Y-x) d(e-xLj(x)) 
- j (x-Y) d(e-L(x)) 

= e-y[I + Lj(y) - Lj+j (y) - Dj(y)] 

where the quantities 

D (y) = e j e-2xLj(x) dx 

satisfy the recurrence relation 

(3.13) {D.(Y)[=L2 L 
Dj y = I rD - I ,y 

r 
Lj ry - Lj ;y j i 2 
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TABLE 2. Relative errors of (2.13) applied to I2 

[Y b 4 8 16 32 64 128 

1/2 5.2E-2 1.6E-2 5.4E-3 1.8E-3 5.9E-4 1.8E-4 
l.OE-2 3/2 2.7E-2 2.9E-3 4.1E-4 6.4E-5 l.lE-5 1.7E-6 

7/2 2.6E- 1 5.6E-4 8.2E-6 2.3E-7 7.9E-9 2.7E- 10 

1/2 1.5E-3 2.8E-3 1.5E-3 3.9E-4 1.4E-4 4.2E-5 
1 3/2 9.3E-3 1.6E-4 1.2E-4 5.9E-6 1.4E-6 2.6E-7 

7/2 2.8E- 1 3.4E-5 1.2E-5 1.6E-7 4.OE-9 7.3E- 11 

1/2 7.1E-3 4.6E-3 1.6E-4 1.2E-4 2.2E-5 3.4E-6 
10 3/2 1.8E-3 4.7E-4 4.6E-6 3.OE-6 1.6E-7 8.3E-9 

7/2 3.7E-3 4.1E-5 6.OE-8 8.4E-9 8.9E-11 8.7E- 13 

Therefore, from (3.12) we have the expressions 
(3.14) 
{ao(y) = a2(y)=e-y(y +) 

aj(y) = aj2)(y) = e-Y[-Lj+i(y) + 2Lj(y) - Lj-(y) -Dj(y) +Dj-(y)], 

j = 1 , 2, . .. , 

which are needed to construct the coefficients Wni(Y) (see (3.4)) of the corre- 
sponding product rule (2.13). 

In Table 2 we report the estimated relative errors3 at the points y = 10-2, 1, 
10,for b= 4 2 and n=2k, k=2,...,7. 

Next we construct the coefficients wn,i(y) of (2.13) when this latter is applied 
to the integral I3 in (3.3). To derive an expression for the quantities aj(y) = 
a53)(y) in (3.4), we examine first 

P00 

,4j3)(y) = j e-xEl(lx - yI)LS)(x) dx 

19' foo 

El (y - x) d(e-xLj(x)) - El(x - y) d(e-xLj(x)) 

when y > 0. 
Since (see [1]) FEl(v) = ev , by applying the integration-by-parts rule, 

we obtain 

(3.15) 3)(y) = E1(y) - Q(y) j = O, 1, 

where the quantity 

0?? e-lx-YI 
(3.16) Q;(y)= e-x yL(x)dx 

satisfies the recurrence relation 
(3.17) 

{ QO(y) = -e-Y(y + log 2y), 

Qi(Y) = (1 - Y)QO(Y) -o 

(j + 1)Qj+l(y) = (2j + 1 - y)Qj(y) - jQj-l(y) - a2)(y) 11 ,2. 

3These are obtained by taking as exact value the approximation given by the same rule with 
n = 360 nodes. 
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TABLE 3. Relative errors of (2.13) applied to I3 

Y b 4 8 16 32 64 128 

1/2 2.OE- 1 8.4E-2 3.3E-2 1.2E-2 4.OE-3 9.7E-4 
l.OE-2 3/2 2.OE- 1 3.4E-2 6.1E-3 l.lE-3 1.7E-4 1.6E-5 

7/2 5.3E-0 3.2E-2 8.9E-4 3.1E-5 9.8E-7 7.OE-9 
1/2 1.9E-2 1.4E-3 1.6E-3 1.2E-5 4.9E-6 4.9E-7 

1 3/2 2.3E-2 2.5E-4 2.7E-4 1.9E-5 3.3E-6 4.2E-7 
7/2 9.3E- 1 5.8E-4 7.6E-5 1.7E-6 8.1E-8 2.7E-9 
1/2 7.5E-3 1.1E-2 1.6E-3 8.4E-4 1.4E-4 2.4E-6 

10 3/2 1.6E-3 8.4E-4 5.3E-5 1.3E-5 l.1E-6 1.8E-8 
7/2 4.OE-3 5.4E-5 5.2E-7 2.7E-8 5.OE- 10 2.5E- 12 

The sign f in (3.16) means that the integral is defined in the Cauchy princi- 
pal value sense. The letter y in (3.17) denotes the Euler-Mascheroni constant 
0.57721566490153286.... Thus, from (3.12) we have 

(3.18) { aO3) (y) = El (y) - Qo(y), 

a (3)(y) = -Qj(y) + QI(y), j = 1, 2. 

When y = 0 we need to consider the quantity 

j[V 3)=(0) -YjE3)1(0)]- El (x)d(e-xj[Lj(x) -Lj-l (x)]), j= 1, 2, 

and recall relation (3.9); we obtain 

('3 - (0)M3)S(0)]=j El(x)d(e-xxL(.l(x)) e=-x[exLSxl)(x)Idx. 

By rewriting the last integral in the form (see (3.10)) 

- J e-x d(e-xLj- 1I (x)), 

and applying to it the integration-by-parts rule, we finally have 

j[j3) (0) _ -3) 1 (O)] = 1 -D1l (0), 

that is, 

(3.19) aj3)(0) - (1 - 2-j)/j j = 1 2. 

For the coefficient a 3)(0) we obtain the value 

(3.20) a (3)(0) = log 2. 

In Table 3 we report the estimated relative errors at the point y 10-2, 1 
10,for b= 1 3 2 and n=2k k=2,...,7. 

According to Remark 3, when we apply our product rule to integrals I2 
and I3 defined in (3.2) and (3.3), we should expect a convergence rate of type 
0(nll+b), or 0(n +b-8) with e > 0 as small as we like. The behavior of the 
errors reported in Tables 2 and 3 seems to confirm this estimate. 
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TABLE 4. Relative errors for u(0) 

n 4 8 16 32 64 
rel.err. 3.6E- 3 1.3E- 3 4.OE-4 1.2E-4 3.3E- 5 

Finally, we consider one further application of the product rule used in the 
last example. We use it to construct a Nystr6m interpolant for the following 
case of the well-known linear transport equation (see [2, 13]): 

(3.21) u(y) - El(lx -yI)u(x)dx= 

whose solution at x = 0 assumes the known value u(0) - _. 

Since it is known (see [13]) that limx ,o u(x) = 1 and u(x) - 1 = o(e-ux) 
as x - oo, for any 0 < , < u*, ,* = 0.957504, we set u(x) = u(x) - 1 and 
rewrite (3.21) in the following form: 

(3.22) u(y) - - j e-xE(Ix - yI)[exu(x)] dx = -[e - yEi(y)]. 

We recall that u E Co0[0, oo) and, furthermore, as x -- 0 the solution u(x) 
behaves like c + xb for any 0 < b < 1 (see [13]). (Actually, it appears (see [2]) 
that u(x) c + x logx .) 

In Table 4 we report the relative accuracy we have obtained by our Nystrom 
interpolant at the origin for some values of n. 

We have also evaluated the interpolant at x = 1, 2,..., 10 and noticed that 
as we move away from the point x = 0 the accuracy seems to improve slightly, 
as predicted by the values reported in Table 3. 

All computations have been performed on a personal computer, using 16-digit 
arithmetic. 
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